О роли компьютерной техники в современном обществе (интервью с Марчуком Г.И.)

О роли компьютерной техники в современном обществе (интервью с Марчуком Г.И.)

Интервью о роли компьютерной техники в современном обществе в конце 1980-х годов академик Г.И. Марчук дал журналисту А. Лепихову. В манере, свойственной Гурию Ивановичу, доступно и чётко показана роль ЭВМ в современном мире: науке, производстве, экономике, социальной сфере и т. д. Это интервью не утратило актуальности и в наши дни, а в некоторых случаях усилило драматизм, связанный с применением ЭВМ, местом и ролью в обществе специалистов по информационным технологиям. Он говорит о новой реальности, в которой надо по-другому учить школьников, перестраивать всю систему высшего образования, изменить характер подготовки и переподготовки техников и рабочих, научить руководящий состав предприятий эффективно использовать электронную технику.

—   Мы живём в такое время, когда электронная вычислительная техника начинает буквально пронизывать все сферы человеческой деятельности — от большой науки до автоматических детских игр. И, как это всегда бывает при активном вторжении в нашу жизнь чего-то принципиально нового, процесс «экспансии ЭВМ», конечно же, требует осмысления. В первую очередь возникает вопрос: что явилось побудительной причиной развития вычислительной техники?

—   Г.М.: Необходимость решения всё более и более сложных задач науки, техники, экономики, стремление к выражению качественных представлений количественными. Это относится ко всем наукам: к географии и геологии, медицине и социологии... Не говоря уж о потребностях инженеров и конструкторов, которые раньше многих стали ощущать недостаток в вычислительных средствах.

Как хорошо известно специалистам, принципы электронной вычислительной техники были сформулированы свыше ста лет назад, а ещё раньше появилась теоретическая основа построения ЭВМ — Булева алгебра, названная по имени английского математика Джорджа Буля, одного из основоположников математической логики. Однако эти достижения были забыты на долгие десятилетия, ибо люди вполне обходились простейшими методами счёта и элементарными для этой цели техническими устройствами. Словом, далеко не единичный случай, когда открытие опередило свою эпоху и сразу не получило надлежащего признания.

То, что мы именуем электронной вычислительной техникой, родилось в 40-е годы XX столетия. Первая ЭВМ ЭНИАК (электронный цифровой интегратор и вычислитель) была «привлечена» к составлению баллистических таблиц. Мощный импульс прогрессу ЭВМ, дали работы в области ядерной физики, а космические исследования подтвердили их выдающееся значение. Солидные ассигнования резко расширили сферу применения электронных вычислительных машин, причём применения с явной выгодой.

Передовые в промышленном отношении страны стимулировали своеобразный «автокатализ» ЭВМ: общество вкладывало в совершенствование вычислительной техники все большие суммы, её использование приносило дополнительную прибыль, часть которой шла на дальнейшее развитие той же вычислительной техники.

Давайте перелистаем отдельные страницы истории отечественных ЭВМ. Первое в СССР авторское свидетельство на изобретение программированной автоматической ЭВМ было выдано в 1948 году. Вслед за тем, 25 декабря 1951 года, в Институте электротехники АН Украинской ССР вступила в строй МЭСМ (малая электронно-счётная машина) — первая в нашей стране, разработанная под руководством академика С.А. Лебедева. Агрегат занимал площадь 50 квадратных метров, содержал свыше 6 тысяч ламп, которые потребляли 25 киловатт электроэнергии. МЭСМ могла выполнять арифметические операции над пяти-шестизначными цифрами со скоростью... 50 операций в секунду. Но тогда и это казалось фантастическим потому, что примерно в 1,5 тысячи раз превышало «счётные способности» человека. (первой советской ЭВМ всё же правильнее считать ЭВМ М1 И.С. Брука. – прим. Э. Пройдаков).

Очередное детище советских учёных, появившееся в 1953 году, — БЭСМ-1 (быстродействующая электронно-счётная машина). Она уже могла считать почти в 200 раз быстрее и в то время была одной из самых «скоростных» в мире. БЭСМ позволила решить целый ряд задач, за которые специалисты не брались из-за огромного объёма вычислений.

Среди советских учёных, способствовавших прогрессу электронной вычислительной техники, надо назвать академика М.В  Келдыша, президента Академии наук с 1961 по 1975 год, и основателя Сибирского отделения АН СССР академика М.А. Лаврентьева.

Развитие различных отраслей техники укрепляло базу и возможности электроники, что, естественно, сказалось и на ЭВМ. Переходя с ламп на полупроводники, а потом и на интегральные схемы, вычислительные машины выигрывали в быстродействии, находили все новые и новые сферы применения.

ЭВМ на простых интегральных схемах успевают за секунду справиться с сотнями тысяч операций. ЭВМ на больших интегральных схемах по быстродействию обгоняют своих предшественников ещё в десять раз. А сейчас заявляют о себе ЭВМ на сверхбольших интегральных схемах. Их скорость — десятки и сотни миллионов операций в секунду.

Непосвящённого цифры ошеломляют. Между тем это далеко не предел. Комплексная программа научно-технического прогресса стран — членов СЭВ в качестве первоочередной задачи предусматривает создание ЭВМ, которые будут выполнять 10 миллиардов операций в секунду.

Разумеется, все нынешние и прогнозируемые достижения электроники невозможны без освоения производства сверхчистых металлов, специальных сплавов и искусственных кристаллов, без успехов в лазерной технике, во множестве областей прикладных наук. Ясно и другое: без помощи компьютеров наблюдаемый сегодня качественный скачок в разных сферах человеческой деятельности был бы просто немыслим.

И ещё. В какой-то момент ЭВМ — через новые проекты, воплощающие глубокие физические идеи, — заставили разрабатывать новые, эффективные электронные элементы и схемы. Взаимодействие зашло так далеко, что сама ЭВМ на основе систем автоматического проектирования уже создаёт варианты составных частей очередных электронных вычислительных машин. Особенно хорошо это видно на примере микроэлектроники, когда микропроцессор ЭВМ умещается на кристалле площадью менее одного квадратного сантиметра. Здесь проектирование и изготовление микроЭВМ, по существу, объединяются в один цикл.

И всё это произошло за 35—40 лет, на глазах одного поколения исследователей.

—   То, о чём вы говорите, воспринимается как-то отстранённо.

—   Г.М.: Тогда прибегнем к сравнениям. Толщина человеческого волоса равна примерно 100 микронам. И вот представьте, что вы умещаете сетку из 400 транзисторов, каждый из которых состоит из линий толщиной в 1 микрон, на кристалле кремния величиной в сечение вашего волоса. А теперь сожмите эти линии до полмикрона. На той же площади уже можно разместить почти 1,5 тысячи транзисторов-полупроводников. Повторим операцию сжатия. При толщине в четверть микрона каждый транзистор-полупроводник по размеру будет равен крупному вирусу, а площади сечения человеческого волоса хватит для 4500 таких транзисторов.

Это вовсе не упражнение в отвлечённых действиях, а реальность, с какой сталкиваются проектировщики современных ЭВМ. Первые интегральные схемы, или, как говорят специалисты, «чипы», с линиями толщиной в один микрон выходят на мировой рынок. Они содержат свыше миллиона транзисторов. Чипы же с элементами в полмикрона — здесь можно разместить 4 миллиона транзисторов — испытываются сейчас в лабораториях и «встанут на поток» в течение ближайших лет. Чипы с элементами в четверть микрона (десятки миллионов транзисторов), вероятно, войдут в практику где-то ближе к концу нашего столетия. А в самом конце века, по имеющимся оценкам, в наших руках могут оказаться так называемые «гигабитовые интегральные схемы», то есть с миллиардом компонентов каждая.

Не так давно микрон считался пределом для полупроводников на кремниевых чипах. Однако барьер, как видим, преодолён инженерами, которые уже прекрасно освоились в мире ультрамикроминиатюризации. Создаются сложные структуры, иногда приближающиеся по размерам к молекуле, — столь крошечные, что их не разглядеть и в мощные оптические микроскопы.

В то же время чипы с элементами меньше микрона вызывают революцию в самом их изготовлении. Прежде всего требуется полностью автоматизировать производство, ибо присутствие человека может привести к тому, что технологический процесс станет недостаточно чистым. Если кому-нибудь доводилось бывать на заводах полупроводников, то он согласится, что мало где есть места более чистые, чем такие заводы. Поскольку малейшая пылинка грозит испортить чип, рабочие носят белые комбинезоны и стерильные маски, как хирурги. Воздух в производственных помещениях постоянно фильтруется, и в кубическом его сантиметре пылинок в тысячу раз меньше, чем в операционной больницы.

И тем не менее для субмикронных чипов традиционные полупроводниковые заводы безнадёжно «грязны».

Число пылинок в кубическом сантиметре нужно сократить ещё в сто раз. Это реально, если из производственных помещений вообще удалить людей. Но стерильность не единственный фактор. Задачи проектирования, испытания и печатания интегральных схем быстро выходят за рамки человеческих возможностей. Человек просто не в состоянии «уложить» четыре миллиона устройств на крохотной кремниевой пластинке. Такое по плечу только автоматам, управляемым ЭВМ.

Я думаю, что не очень ошибусь, если скажу: где-то в середине 1990-х годов всего одна интегральная схема сможет конкурировать с сегодняшними компьютерами. И стоить она будет наверняка необычайно дёшево. Все, что сейчас делается, самые изощрённые из существующих способов применения чипов — лишь небольшой шаг на пути к тому, что нас ждёт через 10—20 лет.

—   От специалистов по ЭВМ нередко приходится слышать: мол, всякий раз, когда стоимость вычислительной техники уменьшалась скачком, менялся облик мира.

—   Г.М.: Это высказывание, конечно, чересчур категорично и амбициозно. Но нельзя не признать, что быстрое совершенствование элементной базы ЭВМ уже наталкивает конструкторов на серьёзные размышления о том, что ещё несколько лет назад относилось к сфере фантастики.

Прежде всего огромные возможности перед современными ЭВМ открываются в заводских цехах, где внедряются системы, умеющие квалифицированно «руководить» любыми по сложности технологическими процессами и обеспечивающие такой контроль за качеством выпускаемой продукции, который человеку просто не под силу.

Или возьмём, к примеру, автомобили. Сколько их насчитывается в мире? Десятки и десятки миллионов. Микропроцессоры здесь помогут правильно эксплуатировать двигатель, уменьшить выделение выхлопных газов, снизить расход горючего, избежать случайного столкновения на дорогах.

Суперчипы, или сверхбольшие интегральные схемы, без сомнения, произведут революцию и в телевидении. Передача сигналов в цифровом виде — метод, дешёвый именно при наличии суперчипов,— позволяет получать изображение, по своему качеству значительно превосходящ ее нынешнее. Быть может, в моделях таких телевизоров будет всего по два-три суперчипа. Бесспорно, появятся и телевизоры с запоминающими устройствами. Любимые фильмы, спектакли, выступления популярных артистов можно будет воспроизвести в любое время, послав соответствующую команду домашней ЭВМ. Стоимость подобных видеоустройств пока очень велика, но они станут доступными для всех, когда «войдут в обиход» четырёхмегабитовые чипы.

Вспомните первые электронные наручные часы. Уже сама идея, что традиционный, отработанный на протяжении веков механизм можно чем-то заменить, поражала умы. А теперь электронные часы настолько обычны, что успешно соперничают в цене с механическими.

—   Ваш последний пример — как раз повод, чтобы вернуться из будущего в настоящее. Отсюда следующий вопрос: каковы сегодняшние электронные вычислительные машины и какова в общих чертах сфера их применения?

—   Г.М.: Действительно, нынешний «спектр» ЭВМ весьма широк — от суперЭВМ до микропроцессоров. Условно выделяют три основные линии ЭВМ: большие машины с быстродействием в миллионы операций в секунду, мини-ЭВМ с быстродействием в сотни тысяч операций в секунду и микроЭВМ с быстродействием в десятки, а иногда и в сотни тысяч операций в секунду.

Любая из ЭВМ снабжена арифметическим и логическим процессорами, оперативной и долговременной памятью, устройствами управления и ввода-вывода информации. Долговременная память обычно записывается на магнитных дисках, лентах или специальных носителях. Именно долговременная память — средоточение программ, необходимых для расчётов, и всего того материала, что составляет базы данных.

В нашу жизнь входят суперЭВМ с производительностью в сотни миллионов операций в секунду. Как правило, они нужны для исследовательских целей или управления очень сложными научно-техническими комплексами. На основе этих машин, в частности, даются и системы коллективного пользования. Речь идёт о системах прикладных программ, организованных в пакеты по областям применения. Это может быть пакет задач линейной алгебры, статистической обработки результатов эксперимента, пакет отражения информации в виде графиков и т. д. Существенно, что большинство пакетов универсальны, то есть не зависят от характера конкретной задачи. Другими словами, если в ходе решения какой-то задачи появляется необходимость обработать статистические данные или, скажем, вывести информацию на график, то для этого уже не требуются новые программы — довольно универсальных пакетов.

Много служебных пакетов заложено в памяти машины— намного же облегчается труд и увеличивается продуктивность деятельности пользователя ЭВМ, а значит, за этот счёт можно добиться дополнительного народнохозяйственного эффекта. И хотя оценить его не просто, он, разумеется, пропорционален повышению производительности труда тех, кто работает с помощью ЭВМ.

Создание ЭВМ, которые обслуживают абонентов в различных режимах доступа к ним (удалённая пакетная обработка, режим разделения времени, диалог «человек — машина» и т. д.), совершенствование периферийного оборудования и терминалов — оконечных устройств в составе вычислительной системы, предназначенных для ввода и вывода информации при взаимодействии человека с ЭВМ (в этом качестве используют, например, дисплеи, телетайпы), улучшение линий передачи информации заметно расширили их возможности. Это позволило перейти от локальных вычислительных центров, оборудование которых находится в одном месте, к многомашинным комплексам, компоненты которых расположены друг от друга на значительных расстояниях. Последние получили названия «сети вычислительных машин», «сети ЭВМ», «сети ВЦ».

Сети ЭВМ как раз могут наилучшим образом обеспечить работу пользователей в том случае, когда в каких-то пунктах имеется дефицит машинного времени, а в других — избыток. К тому же сеть ЭВМ открывает доступ к огромным базам данных не только универсального, но и специализированного характера, помогает пользователю найти в этих базах «куски» уже хорошо отлаженных программ и прочую ценную информацию, резко ускорить решение своей задачи.

А мини-ЭВМ?

Г.М.: Они применяются преимущественно для обеспечения автоматизированного управления — как производством (АСУ), так и технологическими процессами (АСУТП), в научных исследованиях, системах образования и многих других областях.

В первом случае на плечи ЭВМ ложится анализ выполнения планов, расчёт зарплаты и материально-технических ресурсов, разработка сетевых графиков подготовки производства, оценка рабочих мест и множество других функций. Наличие АСУ — гарантия того, что руководитель в любой момент имеет исчерпывающую информацию о деятельности своего предприятия и может обоснованно принимать необходимые организационно-экономические меры. В самом деле, современное производство — сложный организм с большим числом прямых и обратных связей. Долг и директора, и, конечно, всех звеньев руководства — находить устойчивые по отношению к малым отклонениям состояния этого организма и тот оптимальный вариант, который приводит к наивысшему экономическому эффекту. Естественно, что такой эффект увязывается с теми или иными ограничениями, характерными для реальной производственной обстановки.

Говоря об АСУТП, надо отметить, что их роль очень велика в самом производстве, ибо каждая система предназначается для комплексной автоматизации конкретного технологического процесса. Именно здесь мини-ЭВМ незаменима, и с известным основанием можно считать, что высокий экономический эффект от внедрения АСУТП достигается именно в результате использования электронной вычислительной техники.

Системы управления производственными процессами существуют, пожалуй, с тех пор, как создали конвейер. Но традиционные возможности управления конвейером или жёстко построенным производством были ограничены. И только новые средства вычислительной техники, в том числе и микропроцессорной, позволили контролировать, скажем, ход технологической операции на основе постоянно поступающей и обрабатываемой информации. Это происходит примерно так же, как если бы десятки контроллеров бдительно несли свою службу и при обнаружении каких-либо отклонений от нормы технологии немедленно бы их ликвидировали. Фактически же это делает автоматизированная система управления. Сведения непрерывно поступают от набора датчиков, анализируются на быстродействующих ЭВМ. В их памяти заложены многочисленные варианты нарушения производственного процесса и перечень того, что надо предпринять, чтобы исправить положение. ЭВМ в соответствии с программой «находит» нужную команду и посылает её на исполнительные устройства для внесения необходимых коррективов.

Приведу лишь несколько примеров.

Прокатный стан должен катать лист заданной толщины. Раньше мирились с некоторыми допусками. Они были неизбежны из-за неоднородности исходного материала, неравномерности динамического и статического воздействия. В результате проценты, а то и десяток процентов ценного металла расходовались понапрасну.

Современные же прокатные станы оборудованы датчиками, связанными с ЭВМ. Обнаруживается какое-то расхождение с установленным стандартом — ЭВМ даёт команду для повторного проката, и лист доводится до нужной толщины.

Если стан непрерывный, работает в одном направлении, то ЭВМ «приказывает» следующему валку увеличить давление в клети и снова контролирует толщину стального листа, с тем чтобы принять очередное оперативное решение. При такой прокатке допуски практически исключаются и металл целиком идёт в дело.

Экономия материальных ресурсов — важная задача. Но не менее важно выпускать продукцию, соответствующую высшим техническим требованиям. К примеру, мы плавим чугун. Только очень опытный специалист, что называется, чувствует качество и готовность плавки. Конечно, берутся пробы, проводится экспресс-анализ, но его результаты иногда приходят из лаборатории слишком поздно, поправить уже ничего нельзя. И в итоге — некондиционный чугун. Если же перейти к АСУТП, когда непрерывно ведётся спектральный анализ, регистрируются концентрации всех компонентов плавки, и эти данные обрабатываются на ЭВМ, то доменное производство станет таким же управляемым, как прокатный стан. Будет огромная экономия за счёт получения дополнительных объёмов высококачественного чугуна. Хотя такие системы пока проходят опытно-промышленную проверку, уже ясно, что срок их окупаемости заведомо меньше года.

Создание все новых и новых АСУТП — магистральный путь для развития интенсивной экономики.

Кстати, ещё о значимости мини-ЭВМ. Сегодня уже сформировалась более общая концепция сочетания автоматизации управления производством и автоматизации управления технологическими процессами. Здесь мы приходим к единой системе на базе так называемых интегрированных АСУ. Возможность оптимизации организационных и чисто технических мероприятий, которую даёт такая система, сулит блестящие перспективы.

А теперь, пожалуйста, подробнее — о микропроцессорах.

Г.М.: Эта вычислительная техника встраивается в узлы машин, приборов и элементов. Каждый микропроцессор распоряжается своим узлом. Но он может быть связан с другими узлами машины через другие микропроцессоры. Согласовывает их действия, как правило, единая мини-ЭВМ. Данная структура исходит из логики управления большими системами, например самими предприятиями. Они ведь построены по иерархическому принципу: сначала участки, затем цеха, далее целые производства и, наконец, дирекция.

Микропроцессоры уже заняли прочное место в станкостроении — в станках с числовым программным управлением (ЧПУ). Это новая и активная сфера применения микропроцессорной техники на производстве. Одновременно — и самый радикальный шаг к комплексной автоматизации: от управления одним станком с ограниченным набором операций к безлюдным роботизированным производственным комплексам.

Хотелось бы подчеркнуть главное: большие возможности, какие открывает внедрение компьютеров для достижения народнохозяйственного эффекта. Он складывается за счёт оптимальной организации производства и его составных частей, внесения своевременных коррективов в технологический процесс при случайных отклонениях, надёжной работы без присутствия высококвалифицированного рабочего.

Если вернуться к бытовой технике, то и сейчас уже мы чувствуем влияние на наш быт электроники вообще и микропроцессоров в частности. В продажу поступают стиральные машины с программируемым набором операций, самые разнообразные микрокалькуляторы, видеомагнитофоны и многое другое. Темп интеллектуализации бытовой техники, бесспорно, нарастает. Значит, домашнее хозяйство будет отнимать меньше труда, от чего опять-таки выиграет общественное производство.

—   Сегодня много говорят о том, что проведение научных исследований без электронной вычислительной техники практически невозможно, быть может, кроме самых абстрактных областей, связанных с чисто теоретическими разработками. Как же именно помогают ЭВМ ученным, где их применение нужно в первую очередь?

—   Г.М.: Прежде всего, конечно, в математическом моделировании. В самом деле, научное исследование обычно начинается с гипотез. На их фундаменте строятся все более и более детализированные модели изучаемых явлений, которые обычно и реализуются на ЭВМ. Обладая большим быстродействием и памятью, ЭВМ на основе той или иной модели многократно решает задачу при заданных ей самых различных наборах входных параметров. А это позволяет количественно описать возможные решения данной задачи, выбрать из них те, которые интересуют исследователя. И сделать это в достаточно короткий срок. Оснащение лабораторий электронной вычислительной техникой — надёжный путь повышения темпов научного поиска.

Далее. Выдающиеся достижения последних лет, такие, как создание искусственных генов, получение кормового белка из метана, появление больших и сверхбольших интегральных схем, не могли стать реальностью без вычислительной техники, которая помогали вести соответствующие эксперименты. ЭВМ управляли всеми этапами опыта и при отклонении его от заданной программы немедленно посылали корректировочную команду.

Электронная вычислительная техника незаменима и при обработке результатов экспериментов. Если в докомпьютерную эпоху сложные эксперименты длились днями, а то и неделями, то обработка их результате затягивалась на месяцы, а то и годы. ЭВМ сегодня даёт ответ почти немедленно после окончания эксперимента. Экономия времени поистине огромна. Можно с уверенностью сказать, что ЭВМ увеличили производительность труда исследователей более чем в 10 раз.

Логика современного научного поиска такова, что она требует приближения ЭВМ к учёному — будь то теоретик или экспериментатор. Что касается экспериментаторов, то здесь уже проявилась определённая тенденция: их вполне удовлетворяют стандартные мини-ЭВМ, поскольку характер использования этих машин мало чем отличается от их использования в АСУТП.

С теоретиками дело обстоит сложнее. Им для работы нужна целиком вся ЭВМ, пусть и не такая быстродействующая, но со всеми её возможностями. Режим разделения времени на больших ЭВМ решает эту задачу, но решает лишь частично. Ведь учёный думает, постоянно обращаясь к новой информации; порой у него возникает потребность вмешаться в ход расчётов или изменить их. Однако привлекать большую ЭВМ для таких целей нельзя — очень дороги её время и ресурсы.

Налицо противоречие между потребностями исследователя и возможностями ЭВМ. Оно было преодолено, когда в вычислительной технике родилось новое оригинальное направление — индивидуальные, или, как принято сейчас говорить, персональные, ЭВМ. Это вполне современные машины со свойственной им архитектурой, набором соответствующего оборудования и программ. Работа на персональной ЭВМ ведётся с применением 16- и 32-разрядных слов. Не исключена и 64-разрядная арифметика, конечно, с некоторой потерей скорости вычислений. Персональная ЭВМ имеет устройства ввода-вывода и при необходимости — линии связи с другими вычислительными машинами. То есть если для решения вставшей задачи «способностей» персональной ЭВМ не хватает, то по системе коммуникаций готовую программу можно передать на другую машину, обладающую большими ресурсами, чтобы потом получить «ответ».

Вы рассказали об участии ЭВМ в деятельности учёных. Но научная идея воплощается, если можно так выразиться, в «реальный продукт» обычно только через проектно-конструкторские разработки. Ведь как часто случается: научная идея давно завоевала всеобщее признание, а до её оптимального или просто эффективного внедрения в народное хозяйство проходят годы кропотливого труда инженеров-конструкторов. Сокращается ли эта дистанция?

Г.М.: Реальная возможность сокращения времени «от идеи до машины» возникла после появления САПРов — систем автоматического проектирования. Не буду говорить об историческом пути, который они прошли, хотя сам по себе он интересен и поучителен, а скажу лишь об их основных принципах.

Что же такое современная система проектно-конструкторских работ? Она состоит из трёх взаимосвязанных этапов. Первый — формирование технического задания на проект: человеко-машинный диалог для составления принципиальной схемы. Естественно, проект должен опираться на самые современные научные идеи, учитывать возможности реализации, ограничения по требуемым ресурсам. Это, так сказать, «дискуссии» человека с ЭВМ, в память которой заложены все необходимые сведения — от теоретических моделей до всяческих ограничений. Конечный результат первого этапа — «контур» проекта.

Потом наступает время его детальной конструкторской проработки. На втором этапе широко используются пакеты прикладных программ, ориентированные на проблематику данного проекта. Эта операция, если нужно, сочетается с системой поиска наилучших решений исходя из опыта исследователя. В итоге появляется полный набор проектно-конструкторской документации и её графическое отображение.

И наконец, создаётся проект технологической подготовки производства к выпуску серийной продукции.

Но бывает так, что и идея машины хороша, и конструкторская разработка вполне солидна, а выпускать серийную продукцию нельзя по тем или иным причинам. Тогда начинается так называемый итерационный процесс конструирования — с учётом ограничений, диктуемых производством. Иногда это затрагивает принципиальные стороны проекта, и все как бы повторяется вновь — с уровня доделки, а то и вторичной проработки технического задания. И так до желаемого итога.

Ясно, что наличие ЭВМ резко сокращает сроки прохождения трёх указанных этапов. А чем раньше научная идея воплотится в новую машину или технологию, тем больший экономический эффект получит народное хозяйство. Но выгоды применения ЭВМ этим далеко не исчерпываются.

Система автоматического проектирования станков, обрабатывающих центров или цветных телевизоров — плод напряжённых усилий учёных, конструкторов, технологов и программистов. Ведь сначала нужны пакеты прикладных программ, которые призваны ускорить проектно-конструкторские работы. Затем те же пакеты могут сослужить хорошую службу во всех КБ и на предприятиях, где рождается новая техника. По сравнению с традиционным способом, когда каждый коллектив действовал по-своему, выигрыш колоссальный. Раньше на проект тратились годы, теперь — недели и даже дни.

Верно, что пакеты прикладных программ для САПРов, доведённые до соответствующих стандартов, достаточно трудоёмки и оказываются пока очень дорогими. Но, раз возникнув, они способны удовлетворить любых проектантов и технологов, предоставив в их распоряжение огромные массивы запрограммированного знания. Пакеты прикладных программ становятся нашим национальным богатством. И не удивительно, что с 1983 года они и другое программное обеспечение ЭВМ считаются в нашей стране товарной продукцией. Это важный шаг для стимулирования развития математического обеспечения ЭВМ экономическими средствами.

—   Сегодня объём самой разнообразной информации — научной, экономической, технологической, социальной — нарастает буквально как снежный ком, и уже трудно ориентироваться в информационном океане без помощи ЭВМ. Как практически это делается?

—   Г.М.: Электронные вычислительные машины широко задействованы в области информации — от создания баз данных до организации эффективных поисковых систем.

Начали с упорядочения сложнейших информационных потоков, с объединения обширной массы сведений в специальные разделы, подразделы и пункты. Все они имеют согласованную индексацию, и ЭВМ может переходить от крупных массивов однородной информации ко все более и более мелким. В итоге, непрерывно сужая круг поиска, машина достигает цели — находит то, что интересует пользователя.

Разных по характеру баз данных — многие сотни и даже тысячи. Собрать их все вместе, в некую единую вычислительную систему, просто нереально. В самом деле, возьмём хотя бы три базы данных — о синтезированных органических соединениях, об иммунном статусе больного и о составе и характеристиках звёзд в Галактике. Конечно, у этих данных кое в чём есть общность, но сама предметная информация таких баз, сферы и методы их использования совершенно различны. С одной стороны, их нельзя «отрывать» от коллективов НИИ, клиник, обсерваторий, библиотек — без них они скоро утратят свою свежесть, а значит, и ценность. С другой стороны, и это естественно, надо сделать так, чтобы любая база данных была доступна всем пользователям. Иными словами, их обязательно нужно объединять. Где же выход из сложившегося противоречия? Он был найден в организации распределённой системы знаний.

Действительно, зачем пытаться совместить несовместимое? Гораздо лучше дать каждому коллективу исследователей пусть небольшую, но с достаточно ёмкой памятью ЭВМ для создания своей стандартно-структурированной базы. «Хозяева» этой базы данных будут её постоянно развивать и обновлять — ведь речь идёт о жизненно важной для них информации. Пользователь из любого другого учреждения, «входя» по каналам связи в эту базу данных, приобретает самые свежие и самые квалифицированные сведения. То есть один коллектив в состоянии обеспечивать соответствующей информацией всю страну. Все такие специализированные источники информации как раз и составляют распределённую систему знаний. Если теперь их объединить друг с другом, то мы придём к единой системе банков данных страны. Таков магистральный путь развития современной информационной технологии.

Сейчас, например, Институт органической химии Сибирского отделения АН СССР по телетайпному запросу любого пользователя может дать ответ о том, получалось ли ранее химическое соединение с указанными параметрами или нет. А ведь число химических соединений, если я не ошибаюсь, увеличивается ежегодно примерно на два-три десятка тысяч. Надо ли лишний раз объяснять, насколько подобная «электронная справка» экономит время химика-органика, избавляет его от переоткрытия уже синтезированных веществ.

Или проектно-конструкторская работа, о которой мы только что говорили. Всякая новая машина или техническое устройство должны по крайней мере соответствовать мировому уровню. Но этот мировой уровень нужно непрерывно «отслеживать», оперативно вводить в банки данных свежую информацию, поступающую из разных стран. Речь идёт здесь о десятках и сотнях тысяч типов изделий.

Общество будет становиться все более и более информатизированным. Сперва фундаментальные константы, затем системы технических данных и, наконец, смысловые тексты как наиболее сложный вид информации — вот этапы формирования единой информационной сети нашей страны. Однако это лишь начало пути. Впереди огромная и интереснейшая работа по использованию знаний, накопленных человеком и систематизированных с помощью электронной вычислительной техники.

   Хорошо известно, что ЭВМ способна решать сложнейшие задачи науки и техники. По заданию исследователя она в процессе ответа перебирает многочисленные варианты и останавливается на лучшем из них. Но ведь ЭВМ обычно действует по четко сформулированной программе. Тот же поиск оптимального решения и система перебора предложены ей человеком. А вот обладают ли современные электронные машины собственным интеллектом?

—   Г.М.: Уже на первом этапе развития ЭВМ человек стал приучать их «думать» и делать хотя бы элементарные, но вполне логические выводы. Правда, границы между полностью запрограммированной системой работы ЭВМ и её «инициативой» весьма условны, но, если можно так выразиться, «запрограммированная инициатива» все же есть.

Создавая все более совершенные языки программирования, человек стремится к тому, чтобы записывать условия задачи в форме, близкой к естественному языку. Например, он поручает машине рассчитать крыло самолёта такой-то формы, качества поверхности и размера с учётом определённых скоростей воздушного потока. ЭВМ по принятой информации должна точно, вплоть до мельчайших подробностей, составить математическую задачу. Совсем недавно этим занимался инженер-программист. Существующие сегодня системы отображения исходных условий задачи таковы, что ЭВМ справляется с ними ничуть не хуже. И самое главное — за считанные минуты или часы, в отличие от недель и месяцев, которые требуются специалисту, вооружённому знаниями и интеллектом. Просто современные машины «научились» выбирать рациональные или даже оптимальные промежуточные операции. А это значит, что они способны к принятию решений, когда возможны различные варианты программной реализации вычислений. Вот здесь, на уровне соответствующих машинных языков и трансляторов — способов перевода языка в машинные команды, мы впервые встретились с искусственным интеллектом ЭВМ.

Однако как только ЭВМ стали применяться в проектно-конструкторских работах, для построения автоматизированных систем управления базами данных или технологическими процессами, у исследователей возникла мысль ввести в состав программного обеспечения творческие элементы. Скажем, конструктор начинает проектировать на дисплее деталь машины. Ему нужно знать размеры детали, а также входные и выходные характеристики — деталь ведь должна подходить к будущей машине. Контроль за соблюдением этих непременных условий возлагается на ЭВМ. Если в конструкторском поиске они нарушаются, то ЭВМ немедленно даёт об этом знать человеку. Она выступает в роли опытного помощника или эксперта. Это опять-таки элемент искусственного интеллекта.

Для детали из базы данных нужно выбрать материал необходимой прочности, с определёнными температурными параметрами и т. д. По «заявке» ЭВМ отыскивает требуемые наборы материалов и предлагает человеку. Конструктор же, руководствуясь своим опытом, даёт ЭВМ задание при известных характеристиках выбранного материала рассчитать прочностные, температурные и другие поля детали. Если результаты расчёта его удовлетворяют, работа закончена и деталь готова. Если нет, то он выбирает другой подходящий материал, и все повторяется снова. Как видим, конструктор и ЭВМ вступают в контакт в диалоговом режиме, и все, что должны были делать помощники, используя справочники и соответствующие схемы расчёта, делает ЭВМ. Она заменяет теперь человека не только в выполнении механической работы, но и в логических выводах.

Именно там, где начинается логика и логические выводы, начинается проявление искусственного интеллекта. Человек постепенно передаёт все больше и больше своих функций конструктора-исследователя машине, оставляя за собой лишь самые принципиальные, где не обойтись без творчества и незапрограммированного знания.

Особое место моделирование интеллекта занимает в развитии современной науки. Я не говорю, например, о выводе новых математических теорем, хотя здесь с помощью алгебры логики уже достигнуто многое, в частности ленинградской школой профессора Н.А. Шанина, добившейся выдающихся результатов в доказательстве теорем в теории множеств. Возьмём более простые вещи. Всех нас учат в школе решать геометрические и тригонометрические задачи. Но этому же можно «выучить» и ЭВМ. Так что если учёному в ходе исследования потом встретится какая-нибудь задача из Эвклидовой геометрии, она будет немедленно решена машиной.

Далее. В математике, и особенно в вычислительной математике, сегодня отработано много универсальных и специализированных алгоритмов решения задач, связанных с линейной алгеброй, дифференциальными и интегральными уравнениями. Из них также реально построить базы данных и поисковые системы для выбора алгоритмов, с помощью которых задача будет решена ЭВМ наилучшим образом. И это — элемент искусственного интеллекта.

Точное интегрирование, дифференцирование, разложение функций в ряды тоже становится сферой, которую человек уже передаёт электронной вычислительной технике.

Средства интеллектуализации решения задач на ЭВМ и основные модели будут в обозримом будущем развиваться на основе диалога человека и машины. Именно в кооперации высшего интеллекта человека, не поддающегося полному описанию, и все более совершенствуемых элементов искусственного интеллекта ЭВМ с её уникально быстрым перебором массивов данных, необходимой информации и поиском различных оптимизаций — перспектива использования электронных вычислительных машин.

Пока же на повестке дня стоит гораздо более скромная цель: научить ЭВМ понимать нас на уровне пусть простого, но естественного языка; давать советы человеку, не посвящённому в тонкости алгоритмов решения сложных задач; отыскивать оптимальные варианты решений; отражать объёмную информацию в виде графиков и голограмм; отвечать нам синтезированной речью.

Таков далеко не полный, но основной перечень проблем искусственного интеллекта, которым человек наделяет ЭВМ. Наделяет для повышения темпов научного поиска, скорости и качества проектно-конструкторских работ, для информационного обеспечения и управления производственными процессами. Если к этому добавить активное использование ЭВМ в медицине, банковском деле, в торговле, на транспорте и ещё во множестве других сфер, то перед нами раскроется поистине бескрайний горизонт применения ЭВМ. Предел их применимости сегодня может поставить лишь наше воображение.

—   Как же будет выглядеть промышленно развитое общество при массовом внедрении достижений электронной вычислительной техники? Где изменения, вызванные ЭВМ, будут наиболее заметными?

—   Г.М.: Прежде всего в общественном производстве. Изменится содержание самого труда и в десятки раз увеличится его производительность.

Современное серийное производство основано на разделении труда, на выполнении специализированных операций, не требующих особенного умения, а ЭВМ в громадной степени увеличивают возможности его полной автоматизации, упраздняя повторяющиеся, монотонные, утомительные для человека операции. Так что такого рода рабочие места исчезнут на промышленных предприятиях в первую очередь. Но не только они. Сегодня на многих заводах уже действуют станки с числовым программным управлением или даже специальные обрабатывающие центры. Однако не надо забывать, что с их появлением изменился характер обязанностей квалифицированного рабочего-станочника. Он теперь лишь наблюдает за автоматизированным оборудованием. Фигура токаря-виртуоза уходит в прошлое. И наоборот, возрастает нужда в специальностях высшей квалификации — в инженерах по эксплуатации микроэлектронной техники, знатоков программного обеспечения.

В следующем веке — а до его наступления рукой подать — большинство рабочих мест в промышленности будут выглядеть совершенно по-иному. Их займут роботы, которые могут «видеть», «слышать», «осязать», реагировать на ультрафиолетовое, инфракрасное или радиоактивное излучение, самопрограммироваться и перепрограммироваться. Уже создаются первые полностью автоматизированные предприятия, где практически отсутствует живой человеческий труд. Автоматы, не знающие отдыха 24 часа в сутки, с производительностью, неизмеримо более высокой, чем у человека, да к тому же «воспроизводящие» сами себя, — близкая реальность.

И к этой реальности нужно быть готовым. Надо по-другому учить школьников (реформа средней общеобразовательной школы уже осуществляется), перестраивать всю систему высшего образования, изменить характер подготовки и переподготовки техников и рабочих, научить руководителей предприятий эффективно использовать электронную технику.

Наука, техника, производство, научно-технический прогресс в целом требуют, чтобы центр внимания при подготовке специалистов всех категорий перемещался от простого усвоения больших объёмов информации к её творческому усвоению, восприятию непрерывно меняющихся представлений, новых тенденций современного развития.

Само появление ЭВМ даёт мощный импульс к созданию таких методик обучения в школах, техникумах и вузах, какие усиливали бы творческие способности человека, вооружённого вычислительной техникой.

Одним словом, всем надо менять привычные приёмы труда и снова идти учиться. Учиться жить и работать в новом, стремительно меняющемся мире, который немыслим без самого широкого использования современной вычислительной техники.

К размещению в Виртуальном музее статью подготовили Понарин О.С., Фёдорова А.П., г. Брест.
Из книги «Горизонты научного поиска», Марчук Г.И. Издательство «Советская Россия», Москва, 1987 г.
17 февраля 2017