История математического моделирования и технологии вычислительного эксперимента

История математического моделирования и технологии вычислительного эксперимента

Математические модели являются одним из основных инструментов познания человеком явлений окружающего мира. Под математическими моделями понимают основные закономерности и связи, присущие изучаемому явлению. Это могут быть формулы или уравнения, наборы правил или соглашений, выраженные в математической форме. Испокон веков в математике, механике, физике и других точных науках естествознания для описания изучаемых ими явлений использовались математические модели. Так, например, законы Ньютона полностью определяют закономерности движения планет вокруг Солнца. Используя основные законы механики, относительно нетрудно составить уравнения, описывающие движение космического аппарата, например, от Земли к Луне. Однако получить их решение в виде простых формул не представляется возможным. Для расчёта траекторий космических аппаратов потребовалось применять компьютеры.

Практические потребности применения компьютеров для математического моделирования изменили само понятие “решить задачу”. До этого исследователь удовлетворялся написанием математической модели. А если ему ещё удавалось доказать, что решение (алгоритм) в принципе существует, то этого было достаточно, если априори полагать, что модель адекватно описывает изучаемое явление. Поскольку, как правило, не существует простых формул, описывающих поведение модели, а стало быть и объекта, который описывается моделью, то единственный путь – свести дело к вычислениям, применению численных методов решения задач. В таком случае необходим конкретный алгоритм, указывающий последовательность вычислительных и логических операций, которые должны быть произведены для получения численного решения. С алгоритмами связана вся история математики. Само слово “алгоритм” является производным от имени средневекового узбекского ученого Аль-Хорезми. Ещё древнегреческим учёным был известен алгоритм нахождения числа “Пи” с высокой точностью. Ньютон предложил эффективный численный метод решения алгебраических уравнений, а Эйлер предложил численный метод решения обыкновенных дифференциальных уравнений. Как известно, модифицированные методы Ньютона и Эйлера до сих пор занимают почётное место в арсенале вычислительной математики. Её предметом являются выбор расчётной области и расчётных точек, в которых вычисляются характеристики моделируемого объекта, правильная замена исходной математической модели её аналогом, пригодным для расчёта, т. е. некоторой дискретной моделью. Поскольку модели должны представлять изучаемые явления в необходимой полноте, понятно, что они становятся весьма сложными.

В модели входят множество величин, подлежащих определению, а сами эти величины зависят от большого числа переменных и постоянных параметров.

Наконец, модели реальных процессов оказываются нелинейными. Аппарат классической математической физики приспособлен для работы с линейными моделями. В этом случае сумма (суперпозиция) частных решений уравнения есть также его решение. Найдя частное решение уравнения для линейной модели, с помощью принципа суперпозиции можно получить решение в общем случае. На этом пути в традиционной математической физике были получены замечательные результаты. Однако она становится бессильной, если встречается с нелинейными моделями. Принцип суперпозиции здесь неприменим, и алгоритмов для построения общего решения не существует. Поэтому для нелинейных моделей законченных теоретических результатов получено немного.

Методология математического моделирования в кратком виде выражена знаменитой триадой “модель-алгоритм-программа”, сформулированной академиком А.А. Самарским, которого считают основоположником отечественного математического моделирования. Эта методология получила свое развитие в виде технологии “вычислительного эксперимента”, разработанной школой А.А. Самарского как одной из информационных технологий, предназначенной для изучения явлений окружающего мира, когда натурный эксперимент оказывается слишком дорогим и сложным.

Во многих важных областях исследований натурный эксперимент невозможен, потому что он либо запрещен (например, при изучении здоровья человека), либо слишком опасен (например, при изучении экологических явлений), либо просто неосуществим (например, при изучении астрофизических явлений).

Вычислительный эксперимент, в отличие от натурных экспериментальных установок, позволяет накапливать результаты, полученные при исследовании какого-либо круга задач, а затем быстро и гибко применять их к решению задач в совершенно других областях. Этим свойством обладают используемые универсальные математические модели. Например, уравнение нелинейной теплопроводности оказывается пригодным для описания не только тепловых процессов, но и диффузии вещества, движения грунтовых вод, фильтрации газа в пористых средах. Изменяется только физический смысл величин, входящих в это уравнение.

Проведение вычислительного эксперимента можно условно разделить на два этапа. После первого этапа вычислительного эксперимента, если надо, модель уточняется. Причём уточнение модели производится как в направлении её усложнения (учёт дополнительных эффектов и связей в изучаемом явлении), так и упрощения (выяснение, какими закономерностями и связями в изучаемом явлении можно пренебречь). На последующих этапах цикл вычислительного эксперимента повторяется до тех пор, пока у исследователя не возникает убеждение в том, что модель адекватна тому объекту, для которого она составлена.

Информационные технологии, поддерживающие вычислительный эксперимент, включают в себя: методы построения математических моделей силами конечных пользователей информационных систем – специалистов в своей предметной области, а не профессиональных математиков и программистов, информационную поддержку их деятельности для поиска и выбора алгоритмов и программ численного решения задач, методы и средства контроля точности производимых вычислений и правильности работы применяемых программ. При проведении вычислительного эксперимента исследователь может с помощью пользовательского интерфейса “играть” на модели, ставя интересующие его вопросы и получая ответы. Таким образом, исследователь получает мощный инструмент для анализа и прогноза поведения сложных нелинейных многопараметрических объектов и явлений, изучение которых традиционными методами затруднено или вообще невозможно.

Пора “младенчества” технологии вычислительного эксперимента приходится на 1950-е годы XX века.

Дата появления первых серьёзных результатов вычислительного эксперимента в СССР зафиксирована вполне официально – 1968 год, когда Госкомитет СССР по делам открытий и изобретений засвидетельствовал открытие явления, которого на самом деле никто не наблюдал. Это было открытие, так называемого, эффекта Т-слоя (температурного токового слоя в плазме, которая образуется в МГД-генераторах). Свидетельство на это открытие было выдано академикам А.Н. Тихонову и А.А. Самарскому, члену-корреспонденту АН СССР С.П. Курдюмову, докторам физико-математических наук П.П. Волосевичу, Л.М. Дегтяреву, Л.А. Заклязьминскому, Ю.П. Попову (ныне директор ИПМ им. М.В. Келдыша РАН), В.С. Соколову и А.П. Фаворскому. В данном случае вычислительный эксперимент предшествовал натурному. Натурные эксперименты “заказывались” по результатам математического моделирования. Через несколько лет в трёх физических лабораториях на разных экспериментальных установках практически одновременно был надёжно зарегистрирован Т-слой, после чего технологам и инженерам стал окончательно ясен принцип работы МГД-генератора с Т-слоем.

Плазма с её нелинейными свойствами стала одним из важнейших объектов математического моделирования и вычислительного эксперимента. Заманчивая перспектива решения энергетической проблемы связана с управляемым термоядерным синтезом изотопов водорода, дейтерия и трития. Энергетическая проблема для человечества заключается в том, что нефти и газа при нынешнем темпе их потребления хватит всего на несколько десятков лет. А сжигать столь ценное химическое сырье в топках электростанций и двигателях внутреннего сгорания – это, по образному выражению Д.И. Менделеева, “почти всё равно, что топить печь ассигнациями”. С запасами угля дело обстоит гораздо лучше, но его добыча с каждым годом становится всё труднее. Выходом может быть лазерный термоядерный управляемый синтез, исследование которого осуществляется с помощью вычислительного эксперимента. В 1974 г. коллектив сотрудников ФИАН и ИПМ АН СССР под руководством академиков Н.Г. Басова, А.Н. Тихонова и А.А. Самарского предложил принципиально новую концепцию лазерного термоядерного синтеза на основе результатов вычислительного эксперимента.

Ещё одна область использования вычислительного эксперимента – это “вычислительная технология” – применение математического моделирования с помощью компьютеров для разработки технологических процессов в промышленности, а не только для решения фундаментальных научных проблем. Для тех случаев, когда технологические процессы описываются хорошо известными математическими моделями, для расчёта которых существуют эффективные вычислительные алгоритмы, существуют пакеты прикладных программ, технология вычислительного эксперимента позволяет создавать новые программы и совершенствовать средства общения человека с компьютером. У технологов есть потребность в изучении новых промышленных технологий, например, лазерно-плазменной обработки материалов (плазменной термохимии).

Основатель нобелевских премий Альфред Нобель, как известно, исключил математику из числа наук, за достижения в которых присуждается эта высшая научная награда.

Вместе с тем, современное математическое моделирование охватывает области исследований, до недавнего времени недоступные математике. В последние годы ряд Нобелевских премий по химии, медицине, экономике, физике элементарных частиц были присуждены работам, методологическую основу которых составляло математическое моделирование.

Например, для дальнейшего исследования нелинейных процессов в микромире оказалось необходимым разрабатывать соответствующие численные методы и даже компьютеры и компьютерные сети (сетевые grid-технологии), ориентированные на решение задач физики элементарных частиц. Алгоритмы квантово-механических расчетов прогрессируют не менее быстрыми темпами, чем в других областях вычислительной математики.

Биология во многом остается экспериментальной и описательной дисциплиной, а история математического моделирования биологических процессов вряд ли насчитывает более 20 лет. И всё-таки уже можно назвать биологические задачи, для которых вычислительный эксперимент становится определяющей методологией.

Математическое моделирование и вычислительный эксперимент стали ведущей методологией изучения глобальных моделей процессов и явлений на Земле, например, климата Земли. Проведение работ по глобальному моделированию стимулировалось деятельностью Римского клуба, неправительственной организации. Первую из таких моделей опубликовал в 1971 г. американский специалист по теории управления Д. Форрестер.

Компьютерные игры, проведённые Д. Форрестером с глобальной моделью, показали, что в середине ХХI века человечество ждёт кризис, связанный прежде всего с истощением природных ресурсов, падением численности населения и производства продуктов, ростом загрязнения окружающей среды.

Известны результаты глобального моделирования явления “ядерной зимы”, выполненные в ВЦ АН СССР В.В. Александровым и Г.Л. Стенчиковым под руководством академика Н.Н. Моисеева. Эти результаты дали человечеству, в том числе политикам, неопровержимые аргументы против ядерной войны, даже, так называемой, “ограниченной ядерной войны”.

Для математического моделирования и вычислительного эксперимента использовались, главным образом, универсальные цифровые вычислительные машины, доступные коллективам исследователей. В СССР в 1970-80-х годах это были БЭСМ-6 и модели ЕС ЭВМ, для которых разрабатывались библиотеки и пакеты прикладных программ вычислительной математики. С появлением персональных компьютеров стало возможно развитие информационной технологии вычислительного эксперимента, которая предусматривает поддержку пользовательского интерфейса и поиска нужных алгоритмов и программ с помощью персональных компьютеров (отечественного производства или импортных), а проведение расчетов на математических моделях – с помощью высокопроизводительных компьютеров БЭСМ-6, ЕС ЭВМ или супер-компьютеров «Эльбрус».

Потребности вычислительного эксперимента при изучении явлений в наиболее сложных областях науки, таких, как проблемы физики элементарных частиц, молекулярной биологии (например, геном человека), геофизики (например, физики атмосферы) и др., оказались связанными с необходимостью обеспечить предельно возможные вычислительные мощности. Выход был найден в коллективном использовании вычислительных мощностей, доступных исследователям через компьютерные сети. В развитии, так называемых, grid-технологий, разрабатываемых мировым сообществом в настоящее время, участвуют и ведущие научные институты России: Объединенный институт ядерных исследований (г. Дубна), Научно-исследовательский институт ядерной физики МГУ, Институт физики высоких энергий РАН (г. Протвино), Институт биофизики РАН (г. Пущино), Институт прикладной математики им. М.В. Келдыша РАН и другие. Идея организации распределённых вычислений в гетерогенной сетевой среде, называемая метакомпьютингом, образно выражается метафорой «grid (сеть)». Подобно тому, как мы подключаем к электросети бытовые приборы, не задумываясь об устройстве этой электросети, сетевые grid-технологии призваны предоставить исследователям требуемые вычислительные мощности как разделяемые ресурсы. В Европе такой сетью должна стать Data Grid, к которой будет подключен и российский сегмент.

Литература

  1. А.А. Самарский, А.П. Михайлов. Компьютеры и жизнь. М. “Педагогика”, 1987. Серия “Библиотечка Детской энциклопедии”.

4 октября 2017