Масштабируемость системы
Масштабируемость - такое свойство вычислительной системы, которое обеспечивает предсказуемый рост системных характеристик, например, числа поддерживаемых пользователей, быстроты реакции, общей производительности и пр., при добавлении к ней вычислительных ресурсов. В случае сервера СУБД можно рассматривать два способа масштабирования - вертикальный и горизонтальный (рис. 2).
При горизонтальном масштабировании увеличивается число серверов СУБД, возможно, взаимодействующих друг с другом в прозрачном режиме, разделяя таким образом общую загрузку системы. Такое решение, видимо, будет все более популярным с ростом поддержки слабосвязанных архитектур и распределенных баз данных, однако обычно оно характеризуется сложным администрированием.
Вертикальное масштабирование подразумевает увеличение мощности отдельного сервера СУБД и достигается заменой аппаратного обеспечения (процессора, дисков) на более быстродействующее или добавлением дополнительных узлов. Хорошим примером может служить увеличение числа процессоров в симметричных многопроцессорных (SMP) платформах. При этом программное обеспечение сервера не должно изменяться (в частности, нельзя требовать закупки дополнительных модулей), так как это увеличило бы сложность администрирования и ухудшило предсказуемость поведения системы. Независимо от того, какой способ масштабирования использован, выигрыш определяется тем, насколько полно программы сервера используют доступные вычислительные ресурсы. В дальнейших оценках мы будем рассматривать вертикальное масштабирование, испытывающее, по мнению аналитиков, наибольший рост на современном компьютерном рынке.
Свойство масштабируемости актуально по двум основным причинам. Прежде всего, условия современного бизнеса меняются столь быстро, что делают невозможным долгосрочное планирование, требующее всестороннего и продолжительного анализа уже устаревших данных, даже для тех организаций, которые способны это себе позволить. Взамен приходит стратегия постепенного, шаг за шагом, наращивания мощности информационных систем. С другой стороны, изменения в технологии приводят к появлению все новых решений и снижению цен на аппаратное обеспечение, что потенциально делает архитектуру информационных систем более гибкой. Одновременно расширяется межоперабельность, открытость программных и аппаратных продуктов разных производителей, хотя пока их усилия, направленные на соответствие стандартам, согласованы лишь в узких секторах рынка. Без учета этих факторов потребитель не сможет воспользоваться преимуществами новых технологий, не замораживая средств, вложенных в недостаточно открытые или оказавшиеся бесперспективными технологии. В области хранения и обработки данных это требует, чтобы и СУБД, и сервер были масштабируемы. Сегодня ключевыми параметрами масштабируемости являются:
- поддержка многопроцессорной обработки;
- гибкость архитектуры.
Многопроцессорные системы
Для вертикального масштабирования все чаще используются симметричные многопроцессорные системы (SMP), поскольку в этом случае не требуется смены платформы, т.е. операционной системы, аппаратного обеспечения, а также навыков администрирования. С этой целью возможно также применение систем с массовым параллелизмом (MPP), но пока их использование ограничивается специальными задачами, например, расчетными. При оценке сервера СУБД с параллельной архитектурой целесообразно обратить внимание на две основные характеристики расширяемости архитектуры: адекватности и прозрачности.
Свойство адекватности требует, чтобы архитектура сервера равно поддерживала один или десять процессоров без переустановки или существенных изменений в конфигурации, а также дополнительных программных модулей. Такая архитектура будет одинаково полезна и эффективна и в однопроцессорной системе, и, по мере роста сложности решаемых задач, на нескольких или даже на множестве (MPP) процессоров. В общем случае потребитель не должен дополнительно покупать и осваивать новые опции программного обеспечения.
Обеспечение прозрачности архитектуры сервера, в свою очередь, позволяет скрыть изменения конфигурации аппаратного обеспечения от приложений, т.е. гарантирует переносимость прикладных программных систем. В частности, в сильно связанных многопроцессорных архитектурах приложение может взаимодействовать с сервером через сегмент разделяемой памяти, тогда как при использовании слабосвязанных многосерверных систем (кластеров) для этой цели может быть применен механизм сообщений. Приложение не должно учитывать возможности реализации аппаратной архитектуры - способы манипулирования данными и программный интерфейс доступа к базе данных обязаны оставаться одинаковыми и в равной степени эффективными.
Качественная поддержка многопроцессорной обработки требует от сервера баз данных способности самостоятельно планировать выполнение множества обслуживаемых запросов, что обеспечило бы наиболее полное разделение доступных вычислительных ресурсов между задачами сервера. Запросы могут обрабатываться последовательно несколькими задачами или разделяться на подзадачи, которые, в свою очередь, могут быть выполнены параллельно (рис. 3). Последнее более оптимально, поскольку правильная реализация этого механизма обеспечивает выгоды, независимые от типов запросов и приложений. На эффективность обработки огромное воздействие оказывает уровень гранулярности рассматриваемых задачей-планировщиком операций. При грубой гранулярности, например, на уровне отдельных SQL-запросов, разделение ресурсов вычислительной системы (процессоров, памяти, дисков) не будет оптимальным - задача будет простаивать, ожидая окончания необходимых для завершения SQL-запроса операций ввода/вывода, хотя бы в очереди к ней стояли другие запросы, требующие значительной вычислительной работы. При более тонкой гранулярности разделение ресурсов происходит даже внутри одного SQL-запроса, что еще нагляднее проявляется при параллельной обработке нескольких запросов. Применение планировщика обеспечивает привлечение больших ресурсов системы к решению собственно задач обслуживания базы данных и минимизирует простои.
Гибкость архитектуры
Независимо от степени мобильности, поддержки стандартов, параллелизма и других полезных качеств, производительность СУБД, имеющей ощутимые встроенные архитектурные ограничения, не может наращиваться свободно. Наличие документированных или практических ограничений на число и размеры объектов базы данных и буферов памяти, количество одновременных подключений, на глубину рекурсии вызова процедур и подчиненных запросов (subqueries) или срабатывания триггеров базы данных является таким же ограничением применимости СУБД как, например, невозможность переноса на несколько вычислительных платформ. Параметры, ограничивающие сложность запросов к базе данных, в особенности размеры динамических буферов и стека для рекурсивных вызовов, должны настраиваться в динамике и не требовать остановки системы для реконфигурации. Нет смысла покупать новый мощный сервер, если ожидания не могут быть удовлетворены из-за внутренних ограничений СУБД.
Обычно узким местом является невозможность динамической подстройки характеристик программ сервера баз данных. Способность на ходу определять такие параметры, как объем потребляемой памяти, число занятых процессоров, количество параллельных потоков выполнения заданий (будь то настоящие потоки (threads), процессы операционной системы или виртуальные процессоры) и количество фрагментов таблиц и индексов баз данных, а также их распределение по физическим дискам БЕЗ останова и перезапуска системы является требованием, вытекающим из сути современных приложений. В идеальном варианте каждый из этих параметров можно было бы изменить динамически в заданных для конкретного пользователя пределах.